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Interaction of massless electrons with the acoustic phonons is studied in two-dimensional �2D� graphene at
low temperatures by calculating phonon drag thermopower Sg and hot-electron energy-loss rate F�T�. Sg and
F�T� are studied as a function of temperature T and electron concentration ns. For very low temperatures Sg

�T3 and F�T��T4 in contrast to Sg�T4 and F�T��T5 of unscreened deformation-potential coupling in usual
2D systems. We find that Sg is related to the phonon limited mobility �p by Sg�p=vs�T−1 �vs is the phonon
velocity and � is the phonon mean-free path� validating Herring’s law for linear dispersion of electrons in
graphene. In the low-temperature limit Sg, F�T��ns

−1/2. For comparison diffusion thermopower Sd is calculated
and Sd�T, ns

−1/2. Our results are compared with those in the usual 2D systems.
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I. INTRODUCTION

Since the recent discovery of the quantum Hall effect in
two-dimensional �2D� graphene which exhibits remarkably
high electronic quality with the mobility � as high as
2�104 cm2 /V s, there has been a great deal of interest
in its electronic properties both theoretically and
experimentally.1–3 It is a very important development in the
low-dimensional electronic phenomenon in nanostructures,
as the 2D graphene systems show the potential to become
high-speed and high power transistors, and revolutionize the
gas sensors capable of detecting individual molecules. This
could lead to enormous changes in nanoelectronics of the
future. Investigations of Novoselov et al.2 and Zhang et al.3

for both the electrons and holes also show linear Dirac-type
bare kinetic-energy dispersion spectra in 2D graphene mono-
layers due to the honeycomb lattice structure of carbon at-
oms. The spectacular findings are universal minimum con-
ductivity of the order of quantum conductance e2 /h,
anomalous half integer quantum Hall effect, cyclotron mass
mc of massless carriers in graphene described by E=mcvF

2

�vF is the Fermi velocity�, and high mobility of samples
which is basically independent of doping and temperature.2,3

Hwang et al.4 have given a theory for 2D graphene carrier
transport, and its quantitative agreement with the existing
experimental data strongly indicates that the dominant carrier
scattering mechanism is due to charged impurities located
near the interface between the graphene and the substrate. In
their later work5 it is shown that adsorbed molecules, acting
as compensators that partially neutralize the random charged
impurity centers in the substrate, enhance graphene mobility
without much change in the carrier density. Microscopic
ripples6 are believed to be another scattering mechanism lim-
iting the mobility. In a phenomenological study momentum
relaxation times due to contact potential, charged impurities,
and acoustic phonons are given. Moreover, an additional
scattering mechanism involving midgap states, arising due to
local point defects such as vacancies, cracks, etc., is dis-
cussed leading to similar wave vector dependence of its mo-
mentum relaxation time as charged impurities to account for
the experimental findings.7

If all the extrinsic scattering mechanisms such as charged
impurities, interface roughness, graphene ripples, etc. can be

eliminated from the system, in principle, then there are in-
trinsic scatterers such as phonons that cannot be eliminated,
and therefore set a fundamental limit on possible intrinsic
charge-carrier mobilities and performance of graphene-based
devices. Very recent measurements of Morozov et al.8 show
that giant intrinsic carrier mobilities higher than
2�105 cm2 /V s are achievable if extrinsic disorder is
eliminated.

The advantage of graphene over conventional 2D GaAs
structures is that polar-optical phonon scattering which
dominates at room temperature and the piezoelectric scatter-
ing dominating electron-acoustic phonon interaction at low
temperature are absent. Hence, a very high room-temperature
mobility limited only by acoustic phonon scattering through
weak deformation-potential coupling is expected in
graphene. Very recently, Hwang and Das Sarma9 have calcu-
lated the intrinsic temperature-dependent 2D graphene mo-
bility limited only by the acoustic phonon scattering, and
mobility exceeding 105 cm2 /V s is found to be feasible. It is
emphasized that in no other system intrinsic room-
temperature mobility could reach a value as high as
105 cm2 /V s. Due to some uncertainty in the precise quan-
titative value of deformation-potential coupling constant D, a
quantitative comparison with the experimental data makes it
a difficult task.9 The range of D�10–30 eV is quoted in the
literature �see Refs. 7 and 9 and references therein�. Unlike
the mobility, which depends upon scattering due to lattice
disorders and phonons, the low-temperature phonon drag
thermopower Sg and electron energy-loss rate P depend only
on electron-acoustic phonon scattering. Both Sg and P are
sensitive measures of electron-phonon �e-p� coupling, each
of which determine e-p coupling independently. Sg and P
have been exhaustively studied for a two-dimensional
electron gas �2DEG� in Si metal-oxide-semiconductor
field-effect transistors �Si-MOSFETs� and GaAs
heterojunctions.10–18 The uncertainty in the value of D in
graphene is similar to the case of 2DEG in GaAs heterojunc-
tions with D=7–16 eV,16,17,19 and Sg and P studies are used
to resolve this issue. The low-temperature study of Sg and P
in 2D graphene both theoretically and experimentally could
help and provide a more reliable estimate of the deformation-
potential coupling constant. Sg is calculated in a one-
dimensional system of single walled carbon nanotubes.20 In
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the present work we give the calculations of low temperature
Sg and P in 2D graphene by considering 2D electron inter-
action with 2D acoustic phonons via deformation-potential
coupling.

II. THEORY

The low energy-band structure of graphene is modeled as
cones, located at two equivalent Brillouin-zone corners, with
the linear relation between energy and momentum of the
electrons given by Ek=�vF�k�, where k= �kx ,ky� is the 2D
electron wave vector and vF is the Fermi velocity of
graphene which is independent of carrier density. The den-
sity of states D�Ek�= �gsgv /2��2�Ek /vF

2 , where gs is the spin
degeneracy and gv is the valley degeneracy.

A. Phonon drag thermopower

An applied temperature gradient �T causes flow of elec-
trons and phonons from hotter to cooler region. Flow of elec-
trons produces diffusion thermopower Sd. Flow of phonons
carries a momentum current, and a fraction of it is trans-
ferred to electrons due to electron-phonon interaction, pro-
ducing an electron current density J. In the open circuit con-
dition an electric field E=Sg�T is set up to stop J. At low
temperatures Sg dominates over Sd in a usual 2DEG.11–13

Cantrell and Butcher10 have given the standard theory of Sg

of 2D electrons coupled to three-dimensional �3D� phonons.
Following Cantrell and Butcher,10 with appropriate modifi-
cations, we develop a theory to calculate Sg in 2D graphene
where 2D electrons interact with 2D acoustic phonons of
energy � �q and wave vector q= �qx ,qy�. It can be shown
that Sg is given by

Sg =
2e

A�kBT2 �
k,k�,q

��qf�Ek�

���1 − f�Ek����Pq
a�k,k���pvp · �vk�k − vk��k�� , �1�

where the factor of 2 is due to valley degeneracy gv=2 �spin
degeneracy gs=2 is already taken into account in the
Cantrell-Butcher formula�, e is the magnitude of the electron
charge, A is the area of the graphene, � is the electrical
conductivity, f�Ek� is the Fermi-Dirac function, �q=vs�q�,
vp=vsq / �q� is the phonon group velocity, vs is the sound
velocity in graphene, vk=vFk / �k� is the velocity of the elec-
tron in state k, �k is the electron momentum relaxation time,
and �q is the phonon relaxation time. Finally, Pq

a�k ,k�� is the
transition rate at which the electron in state k makes the
transition to state k� by absorbing a phonon, and it is given
by

Pq
a�k,k�� =

2�

�
�C�q��2Nq	k�,k+q	�Ek + ��q − Ek�� . �2�

Here �C�q��2 is the electron-acoustic phonon matrix element,
Nq= �exp���q /kBT�−1�−1 is the phonon distribution func-
tion, and q=k�−k. We assume that �k is function of only Ek
and varies very slowly over energy range ��q. Then, using
equations for vp and vk, and since ��q
EF �EF�0.1 eV�,
in the quasielastic approximation,19 we find

vp . �vk�k − vk��k�� = − vsvF��Ek��4k/q�sin2��/2�

= − �4vsvF��Ek�Ek/��vFq��sin2��/2� ,

�3�

where � is the angle between k and k�. Since q=k�−k, we
can retain the summation over k and k�. The summation over
k� is replaced by the integral

�
k�

→
A

4�2	
0

�

k�dk�	
−�

�

d� =
A

4�2��vF�2	
0

�

dEk�Ek�	
−�

�

d� .

�4�

Integrating with respect to Ek�, in the quasielastic approxi-
mation, we obtain

Sg = −
4evs

2

��kBT2�2vF
�
k
	

−�

�

d��p��Ek�Ek
2 sin2��/2�f�Ek�

��1 − f�Ek + ��q���C�q��2Nq. �5�

Now the summation over k is converted to integration over
energy, which gives

�
k

→
A

4�2��vF�2	
0

�

dEkEk	
−�

�

d =
A

2���vF�2	
0

�

dEkEk.

�6�

The integrand in Eq. �5� is an even function of � and inte-
gration with respect to � can be expressed in terms of q using
q=2k�sin�� /2��. Hence, we obtain

Sg = −
eA

�2�kBT2�4vF
	

0

�

dq	
�

�

dEk
Ek���q�2�p��Ek�


Ek
2 − �2

��C�q��2Nqf�Ek��1 − f�Ek + ��q�� . �7�

The lower limit of integration over Ek is set to be �
=�vFq /2.

The matrix element for deformation-potential scattering is
given by7,9

�C�q��2 =
D2�q

2A�vs
�1 − � q

2k
2� , �8�

where � is the graphene mass density. At low temperatures
phonon scattering is assumed to be dominated by boundary
scattering and �p=� /vs, where � is the phonon mean-free
path assumed to be independent of q. Moreover, ��Ek� is
assumed to vary slowly near Ek=EF. Then, using �
=e2EF��EF� /��2,7,9 we obtain

Sg = −
D2�

2��eEFkBT2�2vs
3vF
	

0

�

dq	
�

�

dEk���q�3
1 − ��/Ek�2

�Nqf�Ek��1 − f�Ek + ��q�� . �9�

At very low temperatures we can make the following
approximation:

f�Ek��1 − f�Ek + ��q�� � ��q�Nq + 1�	�Ek − EF� . �10�

Then, the Ek integration gives
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Sg = −
D2�

2��eEFkBT2�2vs
3vF
	

0

�

dq���q�4Nq

��Nq + 1�
1 − ��/EF�2��1 − ��/EF�� . �11�

Here, ��x�=1 for x�0 and ��x�=0 for x�0.
In the low-temperature region, the Bloch-Gruneisen �BG�

regime T
TBG is defined by a characteristic temperature
kBTBG=2�vskF. In graphene TBG=54
ns K with 2D carrier
density ns measured in units of 1012 cm−2. In the BG regime
��q�kBT. An essential requirement for very low T behavior
is q
kF. Theoretical findings of phonon limited mobility in
graphene show BG power-law behavior of T4 �T6� for un-
screened �screened� deformation-potential coupling.9 In the
ultralow T region q→0 and 
1− �� /EF�2→1, then we get an
approximated equation for Sg with a simple power law

Sg = −
D2�kB

4T34 ! ��4�
2�e�EF�3vs

4vF

, �12�

where ��n� is the Riemann zeta function.
In order to see the relative contribution of Sg to the total

phonon drag thermopower S=Sd+Sg, we briefly examine
Sd of the 2DEG in graphene. Using Mott formula
Sd=−��2kB

2T /3e��d��Ek� /dEk�Ek=EF
, with ��Ek��Ek

p, we
obtain

Sd = −
�2kB

2T�p + 1�
3eEF

. �13�

In the phenomenological study of electronic transport
coefficients,7 this equation is obtained for screened Coulomb
potential scattering with p=1.

B. Energy-loss rate

The acoustic phonon emission process governs the ther-
mal relaxation of hot electrons at low temperatures. This has
been extensively studied both experimentally and theoreti-
cally for a 2DEG in GaAs heterojunctions and
Si-MOSFET.14–18 In graphene-related materials, the energies
of optical phonons are of the order of 0.1–0.2 eV and hot-
electron energy relaxation is considered to be only due to
acoustic phonons even at room temperature. To calculate
energy-loss rate P the “electron temperature model” in which
electrons are assumed to have Fermi-Dirac distribution f�Ek�
with an electron temperature Te greater than the lattice tem-
perature T. The average energy-loss rate via acoustic phonon
emission is given by16,21

P = −
1

Ne
�
q

��q
dNq

dt
, �14�

where Ne is the total number of electrons and the rate of
change in phonon distribution

dNq

dt
= 4�2�

�
�

k
�C�q��2	�Ek + ��q − Ek��	k�,k+q

���Nq + 1�f�Ek���1 − f�Ek�� − Nqf�Ek��1 − f�Ek���� .

�15�

The factor of 4 in the above equation is to account for spin
and valley degeneracies. To calculate P, we follow the same
steps as in the evaluation of Sg and obtain

P = F�Te� − F�T� , �16�

where

F�T� = −
D2

ns��2�4vs
2vF

3	
0

�

dq	
�

�

dEk���q�2
Ek
2 − �2Nq�T�

��f�Ek� − f�Ek + ��q�� . �17�

At low temperatures, we approximate

f�Ek� − f�Ek + ��q� � ��q	�Ek − EF� . �18�

Then, we obtain

F�T� = −
D2EF

ns��2�4vs
2vF

3	
0

�

dq���q�3
1 − ��/EF�2Nq�T�

���1 − ��/EF�� . �19�

In the limit of q→0, we get an approximated equation in the
form of power law

F�T� = −
D2EF�kBT�43 ! ��4�

ns�
2��5vs

3vF
3 . �20�

The expressions for Sg and F�T� are obtained based on the
same basic assumptions with the same e-p interaction, and
their very low T approximated Eqs. �13� and �21� have many
common factors. One can obtain a simple relation between
Sg and F�T�

F�T� = �SgvseT/� , �21�

where � is the numerical constant of the order of unity. At
very low T, �=0.5. This relation provides a very useful way
of predicting either one of Sg or F�T�, with the other given
for the 2DEG in graphene as done in Si-MOSFET.14

III. RESULTS AND DISCUSSION

We numerically evaluate Sg and P using the 2D graphene
parameters:9 �=7.6�10−8 g /cm−2, vF=9.874�107 cm /s,
D=19 eV, and vs=2�106 cm /s. Sg and P are studied as a
function of temperature and electron concentration. The ef-
fects of screening can be taken into account by dividing the
matrix element by the dielectric function.22 However, screen-
ing effects are ignored as the matrix elements in graphene
arise from the change in the overlap between orbitals placed
on different atoms and not from a Coulomb potential.9

A. Phonon drag thermopower

Sg is studied as a function of T in the range of 0.5–10 K
for the range of ns= �1–10��1012 cm−2 with �=10 nm.20
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Sg calculated using Eq. �9� as a function of T is shown in Fig.
1 by solid, dashed, and dot-dashed curves, respectively, for
ns=1.0�1012, 5.0�1012, and 10�1012 cm−2. The nature of
the curves is similar to that of a usual 2DEG. Sg is expected
to flatten for larger temperatures as �p is assumed to be in-
dependent of temperature. For larger temperatures, it is pos-
sible that phonon-phonon scattering may become important,
introducing temperature dependence of �p.20

In the limit of q→0, i.e., for very small T, approximated
Eq. �12� gives Sg�T3 dependence in contrast to the Sg�T4

dependence of unscreened deformation-potential scattering
in the usual 2DEG. The 2D nature of acoustic phonons re-
duces power of T by unity from its 3D value. From our
calculation we observed that at higher temperatures Eq. �9�
gives Sg values which are smaller than the values obtained
from the power law �Eq. �12��. Simple power-law depen-
dence is obeyed up to T=5.0 K for ns=1.0�1012 cm−2 and
up to T=10.0 K for ns=10.0�1012 cm−2. We attribute this
to the function 
1− �� /EF�2 in Eq. �9� which reduces Sg. For
example, at T=10 K Sg is reduced nearly by a factor of 2 for
ns=1.0�1012 cm−2.

In the low-temperature limit, Sg and phonon limited mo-
bility �p are related by Herring’s formula Sg�p�T−1 in bulk
semiconductors,23 Si-MOSFET, and GaAs
heterojunction.11–13,24 In 2D graphene �p�T−4 �Ref. 9� and
Sg�T3. Then we obtain Sg�p�T−1 which validates Her-
ring’s law in 2D graphene in which 2D electrons with linear
dispersion interact with 2D phonons with �q�q. In fact,
using the momentum relaxation time in the low-temperature
limit �Eq. �11� of Ref. 9�, we obtain Sg�p=−vs�T−1, a simple
and straightforward relation, which is the same as in 3D
semiconductors and 2D systems for one acoustic branch.
Consequently and interestingly, in the low-temperature limit,
Sg is used to provide the most accurate way of measuring �p
in the 2D GaAs system even at half filling factor in the
fractional quantum Hall regime.25 However, it is to be noted
that, in a semiconductor thin film for 2D phonons with �q

�q2 �flexural modes�, Herring’s law is invalidated where, as
for phonons with �q�q �dilatational modes�, it is found to
be valid.26 It indicates that the nonlinear dispersion of
phonons with their group velocity being q dependent may
lead to invalidation of Herring’s law irrespective of electron
dispersion.

We also show Sd versus T �dotted curve in Fig. 1� ob-
tained from Eq. �13� with p=1. This curve is for ns=1.0
�1012 cm−2. Scattering due to ionized impurities and vacan-
cies give p=1.7 The relative magnitudes of Sg and Sd depend
upon phonon mean-free path �, ns, T, and p. With the choice
of parameters in the present calculation, Sd is dominant in the
low-temperature region. It is interesting to note that Sd will
be zero if p=−1. The scattering due to the contact potential
gives p=−1.7 If scattering due to ionized impurities, ripples,
and vacancies is eliminated, then Sd can be made zero. Such
a system will be ideal for the study of Sg in the estimating
deformation-potential coupling constant.

From the simple approach of the force balance
argument,11 it is shown that Sg�-fCv /nse, where Cv is the
lattice specific and f is the fraction of momentum lost by the
phonons to the carriers. If f is weakly temperature depen-
dent, then Sg dependence on T comes only from Cv. At very
low temperatures, it can be easily shown that Cv�T2 for 2D
phonons in graphene giving approximate Sg�T2 depen-
dence. For 3D phonons it gives Sg�T3, giving a reasonable
qualitative agreement with the experimental data in GaAs
heterojunctions and Si-MOSFET at liquid-helium
temperatures.11,13

Since it is feasible to control the carrier density in the
graphene plane experimentally,1 it is possible to check ex-
perimentally the ns dependence of Sg. In Fig. 2, we show Sg

versus ns in the range ns= �1–10��1012 cm−2 at T=3.0
�solid curve� and 5.0 K �dashed curve�. Sg shows a weak
dependence on ns and it is decreasing with the increasing ns.
For example, at 5.0 K, when ns is varied from 1�1012 to
10�1012 cm−2, Sg reduces by about three times. In the low-
temperature limit Sg�ns

−1/2 in graphene whereas Sg�ns
−3/2 in

the usual 2DEG for both screened and unscreened cases.

FIG. 1. Phonon drag thermopower Sg versus temperature T for
ns=1.0�1012 cm−2 �solid curve�, ns=5.0�1012 cm−2 �dashed
curve�, and ns=10.0�1012 cm−2 �dot-dashed curve�. Dotted curve
is diffusion thermopower Sd, with p=1, for ns=1.0�1012 cm−2.

FIG. 2. Phonon drag thermopower Sg versus electron concentra-
tion ns for T=3.0 K �solid curve� and T=5.0 K �dashed curve�.
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Sd�ns
−1/2 in graphene and �ns

−1 in the case of the usual
2DEG.

B. Energy-loss rate

Figure 3 shows energy-loss rate P=F�Te� per electron as a
function of electron temperature Te in the range of 0.5–10 K
for ns=1.0�1012 �solid curve�, 5.0�1012 �dashed curve�,
and 10.0�1012 cm−2 �dot-dashed curve� at lattice tempera-
ture T=0. Results are due to Eq. �17�. We observe that, as in
the case of Sg, approximated Eq. �20� overestimates F�Te� in
the higher temperature region which is again ascribed to

1− �� /EF�2. Approximated Eq. �20� gives a simple power
law of F�T��T4 contrary to F�T��T5 due to unscreened
deformation-potential coupling in usual 2DEG �Refs. 14, 15,
and 17� and for 2DEG in a thin semiconductor film.27 It is to
be noted that power law F�T��T5 in the semiconductor thin
film is for 2D dilatational modes with �q�q and is obtained
from the energy relaxation time �e calculation of Ref. 27
using the relation �e

−1��1 /Ce��dP /dTe�,28 where Ce is the
electronic specific heat. Since Ce�D�EF�, in graphene, it
will lead to different ns dependence for �e

−1 and F�Te� unlike
the usual 2DEG where D�EF� is independent of ns. We would
like to point out that low-temperature studies of F�T� in
graphene will avoid a possible additional “intervalley” pho-
non scattering which becomes significant at high
temperatures.9

In Fig. 4, P is shown as a function of ns for ns= �1–10�
�1012 cm−2 at Te=3.0 �solid curve� and 5.0 K �dashed
curve� for T=0 K. Again F�T� has a weak dependence on ns.
In the very low-temperature limit F�T��ns

−1/2, which is the
same as for Sg, whereas, F�T��ns

−3/2 for deformation-
potential coupling in the usual 2DEG,14 and for the 2DEG in
semiconductor thin films27 for both screened and unscreened
interactions.

We would like to make some more comparisons of Sg and
F�T� in graphene with those in Si-MOSFET �Ref. 14� al-
though an exact comparison may not be possible due to
massless electron in graphene. Sg and F�T��D2, and Sg

�� as in Si-MOSFET. Any change in the value of D
changes the values of Sg and F�T� by its square. In MOSFET
��0.5 mm whereas ��10 �m chosen in our calculation
is about an order of magnitude smaller. In graphene � may
vary in the range of 1–100 �m. Besides, in the low-
temperature limit we see that Sg�vs

−4 and F�T��vs
−3 in

graphene, and Sg�vs
−5 and F�T��vs

−4 for unscreened
deformation-potential coupling in Si-MOSFET.14 In Si-
MOSFET vs=vt=5.269�105 cm /s for transverse-acoustic
�TA� phonons and vs=vl=8.834�105 cm /s for
longitudinal-acoustic �LA� phonons which are smaller by a
factor of about four and two, respectively, compared to the
value of vs=2.0�106 cm /s in graphene used in our calcu-
lation. In Si-MOSFET Sg and F�T� due to TA phonons give a
major contribution because of the smaller value of vt. Four
times larger value of vs in graphene may make the values of
Sg and F�T� about 100 times smaller than their respective
values in Si-MOSFET for the unscreened case. A similar
comparison may be made with Sg and F�T� due to un-
screened deformation-potential coupling in GaAs
heterojunctions.13,15,17

We would like to point out that in graphene different val-
ues of vs are being used in the literature. For example, vs
=2.0�106 cm /s �Refs. 9 and 20� and vt=2.82�105 cm /s
for TA phonons,7 and vl=7.33�105 cm /s for LA
phonons.7,29 For vl=7.33�105 cm /s, Sg and F�T� will be
enhanced by about one to two orders of magnitude.

As discussed in Ref. 9, dividing the e-p interaction matrix
element by the dielectric function,22 in the low-temperature
limit, gives Sg�T5, F�T��T4, Sg, F�T��ns

−3/2, Sg�vs
−6, and

F�T��vs
−5. Sg and F�T� values will be reduced by a few

orders of magnitude as in Si-MOSFET and GaAs heterojunc-
tion.

It is worth noting that, due to electron-hole symmetry
�i.e., with the Fermi energy or chemical potential �=0�, ther-

FIG. 3. Electron energy-loss rate P versus electron temperature
Te, at lattice temperature T=0 K, for ns=1.0�1012 cm−2 �solid
curve�, ns=5.0�1012 cm−2 �dashed curve�, and ns=10.0
�1012 cm−2 �dot-dashed curve�.

FIG. 4. Electron energy-loss rate P versus electron concentra-
tion ns for Te=3.0 K �solid curve� and Te=5.0 K �dashed curve�
with T=0 K.
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mopower vanishes in single wall carbon nanotubes30,31 and
graphene.32 However, large thermopower can be obtained by
breaking the electron-hole symmetry. Defect states do break
symmetry and may lead to large value of the
thermopower.31,32 In our calculation the contribution due
only to electrons is considered which may overestimate Sg.

IV. CONCLUSIONS

Using the unscreened acoustic deformation-potential cou-
pling, the phonon drag thermopower Sg and hot-electron
energy-loss rate F�T� are theoretically studied in 2D
graphene at low temperatures. Since Sg and F�T� are sensi-
tive measures of electron acoustic phonon coupling, their
theoretical and experimental studies may help in removing
the existing ambiguity in the value of deformation-potential

constant D in graphene. Although we have used D=19 eV
�Ref. 9� in all our numerical calculations for illustration, one
can change D by scaling our results by D2. Large values of
vF and vs in graphene may lead to the smaller values of Sg

and F�T� compared to their respective values in usual 2D
systems. In the low-temperature limit we find Sg�T3 and
F�T��T4, and Sg and F�T��ns

−1/2. Herring’s law is also vali-
dated in graphene in which electron and phonon dispersions
are linear. Our calculations may require extensions and
modifications at high temperatures to include inelasticity of
electron scattering and phonon scattering by impurities and
phonons in the study of Sg, and intervalley phonon scattering
in the study of F�T�. These properties remain to be investi-
gated experimentally to compare with the theory developed
in the present work. Measurements of Sg require separation
of Sd from measured S.
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